首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7267篇
  免费   999篇
  国内免费   2081篇
化学   9331篇
晶体学   32篇
力学   71篇
综合类   59篇
数学   7篇
物理学   847篇
  2024年   8篇
  2023年   119篇
  2022年   168篇
  2021年   312篇
  2020年   418篇
  2019年   323篇
  2018年   302篇
  2017年   283篇
  2016年   388篇
  2015年   383篇
  2014年   481篇
  2013年   797篇
  2012年   522篇
  2011年   490篇
  2010年   435篇
  2009年   432篇
  2008年   511篇
  2007年   530篇
  2006年   453篇
  2005年   406篇
  2004年   401篇
  2003年   433篇
  2002年   240篇
  2001年   220篇
  2000年   208篇
  1999年   171篇
  1998年   123篇
  1997年   143篇
  1996年   130篇
  1995年   120篇
  1994年   92篇
  1993年   68篇
  1992年   70篇
  1991年   40篇
  1990年   39篇
  1989年   24篇
  1988年   20篇
  1987年   9篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1977年   1篇
  1973年   1篇
  1969年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
ABSTRACT

The stable configurations, electronic structures and catalytic activities of single-atom metal catalyst anchored silicon-doped graphene sheets (3Si-graphene-M, M?=?Ni and Pd) are investigated by using density functional theory calculations. Firstly, the adsorption stability and electronic property of different gas reactants (O2, CO, 2CO, CO/O2) on 3Si-graphene-M substrates are comparably analysed. It is found that the coadsorption of O2/CO or 2CO molecules is more stable than that of the isolated O2 or CO molecule. Meanwhile, the adsorbed species on 3Si-graphene-Ni sheet are more stable than those on the 3Si-graphene-Pd sheet. Secondly, the possible CO oxidation reactions on the 3Si-graphene-M are investigated through Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and new termolecular Eley–Rideal (TER) mechanisms. Compared with the LH and TER mechanisms, the interaction between 2CO and O2 molecules (O2?+?CO → CO3, CO3?+?CO → 2CO2) through ER reactions (< 0.2?eV) are an energetically more favourable. These results provide important reference for understanding the catalytic mechanism for CO oxidation on graphene-based catalyst.  相似文献   
22.
Two nickel complexes, [Ni(tpen)](ClO4)2.0.5CH3COCH3 ( 1 ) and [Ni(tpbn)](ClO4)2 ( 2 ), of tetrapyridyl ligands N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,2-ethanediamine (tpen) and N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,4-butanediamine (tpbn) were prepared and their catalysis for water oxidation reaction (WOR) studied. In 0.1 M phosphate buffer solution (PBS) of pH 8.0, complex 1 is a homogeneous molecular catalyst with an overpotential of ~440 mV and a Faradaic efficiency of 89%. At pH ≥ 9.0, complex 1 degraded gradually during the catalytic process and formed NiOx composite (nickel oxide with general formula NixOyHz) active for WOR. In contrast, complex 2 deteriorated under measured conditions (pH 8.0–12.0) and formed NiOx composite active for WOR. The NiOx composite derived from 1 in 0.1 M PBS at pH 11.0 showed an activity with an overpotential of ~500 mV, a Tafel slope of ~90 mV/decade and a Faradaic efficiency of 97%. Mechanisms were proposed for water oxidation catalyzed by 1 and 2 . This work revealed that the catalytic activity of the nickel complexes was related to the flexibility of the tetrapyridyl ligands and the adaptability of the coordination sphere of the nickel(II) center.  相似文献   
23.
Fe–Sn–O mixed oxides were synthesized and used as catalysts for Baeyer–Villiger oxidation of cyclohexanone, which showed both high catalytic activity and selectivity. X‐ray powder diffraction and scanning electron microscopy suggested that the Fe–Sn–O catalysts had a tetragonal structure with a grain size of 29.3 nm. An ε‐caprolactone yield as high as 98.8% was obtained in a small‐scale experiment (5 mmol of cyclohexanone). In a scale‐up test (20 mmol of cyclohexanone), the cyclohexanone conversion and ε‐caprolactone yield were 96.7 and 96.5%, respectively. In addition, the catalysts can be reused five times without any major decline in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
24.
《Comptes Rendus Chimie》2015,18(1):45-55
The aim of this work is to investigate the contribution of the binder (NiAl2O4) on the performances of the oxygen carrier NiO/NiAl2O4. To this purpose, oxidation/reduction cycles have been performed in a fixed bed reactor using CO as a fuel. The results reveal that the binder can react with the fuel to form CO2, and that its total reduction capacity increases with temperature. XRD characterizations performed on the binder (on the fresh and after several cycles) show a shift of the diffraction peaks of NiAl2O4 toward the ones of γ-alumina, which can be attributed to a progressive decomposition of NiAl2O4 to alumina and NiO.  相似文献   
25.
This review gives an overview of the electrochemical investigations about the properties of various types of graphene composites in the ethanol oxidation. Various routes to provide appropriate graphene‐based materials required electrochemical techniques for investigation of different types of the materials as well as their performance and efficacy in ethanol oxidation are discussed in detail. Furthermore, it is demonstrated that the incorporation of suitable materials, e. g. noble metals (graphene‐supported binary and ternary metal nanoparticles), metal oxides, conductive polymer, etc, with graphene results in excellent electrocatalytic activity, superb durability and selectivity in ethanol oxidation. Immobilization of electrocatalytically active NPs on graphene supports using physical approaches is considered as an effective route to prepare direct ethanol fuel cell (DEFC) anode catalysts.  相似文献   
26.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
27.
New thiazole derivatives were synthesized and fully characterized, then coordinated with PtCl4 salt. Also, the newly synthesized Pt(IV) complexes were investigated analytically (elemental and thermogravimetric analyses), spectrally (infrared, UV–visible, mass, 1H NMR, 13C NMR, X‐ray diffraction) as well as theoretically (kinetics, modeling and docking). The data extracted led to the establishment of the best chemical and structural forms. Octahedral geometry was the only formula proposed for all complexes, which is favorable for d6 systems. The molecular ion peaks from mass spectral analysis coincide with all analytical data, confirming the molecular formula proposed. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) allowed discrimination of features between crystalline particles and other amorphous morphology. By applying Gaussian09 as well as HyperChem 8.2 programs, the best structural forms were obtained, as well as computed significant parameters. Computed parameters such as softness, hardness, surface area and reactivity led us towards application in two opposing pathways: tumor inhibition and oxidation activation. The catalytic oxidation for CO was conducted over PtO2, which was yielded from calcination of the most reactive complex. The success of catalytic role for synthesized PtO2 was due to its particulate size and surface morphology, which were estimated from XRD patterns and SEM images, respectively. The antitumor activity was tested versus HCT‐116 and HepG‐2 cell lines. Mild toxicity was recorded for two of the derivatives and their corresponding complexes. This degree of toxicity is more favorable in most cases, due to exclusion of serious side effects, which is coherently attached with known antitumor drugs.  相似文献   
28.
Development of supramolecular methods to further activate a highly reactive intermediate is a fascinating strategy to create novel potent catalysts for activation of inert chemicals. Herein, a supramolecular approach to enhance the oxidizing ability of a high-valent oxo species of a nitrido-bridged iron porphyrinoid dimer that is a known potent molecular catalyst for light alkane oxidation is reported. For this purpose, a nitrido-bridged dinuclear iron complex of porphyrin-phthalocyanine heterodimer 3 5+, which is connected through a fourfold rotaxane, was prepared. Heterodimer 3 5+ catalyzed ethane oxidation in the presence of H2O2 at a relatively low temperature. The site-selective complexation of 3 5+ with an additional anionic porphyrin (TPPS4−) through π–π stacking and electrostatic interactions afforded a stable 1:1 complex. It was demonstrated that the supramolecular post-synthetic modification of 3 5+ enhances its catalytic activity efficiently. Moreover, supramolecular conjugates achieved higher catalytic ethane oxidation activity than nitrido-bridged iron phthalocyanine dimer, which is the most potent iron-oxo-based molecular catalyst for light-alkane oxidation reported so far. Electrochemical measurements proved that the electronic perturbation from TPPS4− to 3 5+ enhanced the catalytic activity.  相似文献   
29.
In order to gain new insights into the effect of the π–π stacking interaction of the indole ring with the CuII–phenoxyl radical as seen in the active form of galactose oxidase, we have prepared a CuII complex of a methoxy-substituted salen-type ligand, containing a pendent indole ring on the dinitrogen chelate backbone, and characterized its one-electron-oxidized forms. The X-ray crystal structures of the oxidized CuII complex exhibited the π–π stacking interaction of the indole ring mainly with one of the two phenolate moieties. The phenolate moiety in close contact with the indole moiety showed the characteristic phenoxyl radical structural features, indicating that the indole ring favors the π–π stacking interaction with the phenoxyl radical. The UV/Vis/NIR spectra of the oxidized CuII complex with the pendent indole ring was significantly different from those of the complex without the side-chain indole ring, and the absorption and CD spectra exhibited a solvent dependence, which is in line with the phenoxyl radical–indole stacking interaction in solution. The other physicochemical results and theoretical calculations strongly support that the indole ring, as an electron donor, stabilizes the phenoxyl radical by the π–π stacking interaction.  相似文献   
30.
The design and development of non-noble metal alternatives with superior performance and promising long-term stability that is comparable or even better than those of noble-metal-based catalysts is a significant challenge. Here, we report the thermal-induced phase engineering of non-noble-metal-based nanowires with superior electrochemical activity and stability for the methanol oxidation reaction (MOR) under alkaline conditions. The optimized Cu–Ni nanowires deliver an unprecedented mass activity of 425 mA mg−1, which is 4.3 times higher than that of the untreated one. Detailed catalytic investigations show that the enhanced performance is due to the large active area, the increased number of active sites (NiOOH), and fast methanol electrooxidation kinetics. In addition, the generated hollow feature in the nanowires provides a unique void space to release the volume expansion, where the activity can be maintained for 5 h without a distinct activity decay. The present work emphasizes the importance of precisely phase modulating of nanomaterials for the design of non-noble metal electrocatalysts towards the MOR, which opens up a new pathway for the design of cost-effective electrocatalysts with promising activity and long-term stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号